В работе рассматривается техническое средство в виде вертикальной полости для управления сейсмическим напряженным состоянием исследуемого объекта. Волны, распространяясь, встречаются с полостью. Огибая полость волны, теряют часть энергии направленной на предполагаемое сооружение и тем самым уменьшают свое влияние на предполагаемое сооружение.
Постановка задачи при нестационарных сейсмических воздействиях
Волны напряжений различной природы, распространяясь, в деформируемом теле взаимодействуют, друг с другом, что приводит к образованию новых областей возмущений, перераспределению напряжений и деформаций.
При интерференции волн напряжений их интенсивности складываются. Они могут достигать значений, превосходящих предел прочности материала. В этом случае наступает разрушение материала.
После трехкратного или четырехкратного прохождения и отражения волн напряжений в теле процесс распространения возмущений становится установившимся, напряжения и деформации усредняются, тело находится в колебательном движении.
Некоторые вопросы в области моделирования нестационарных динамических задач с помощью применяемого метода, алгоритма и комплекса программ рассмотрены в следующих работах [1–10].
В работах [1, 4, 6–8] приведена информация о физической достоверности и математической точности моделирования нестационарных волн напряжений в деформируемых телах с помощью рассматриваемого численного метода, алгоритма и комплекса программ.
Для решения задачи о моделировании упругих нестационарных волн напряжений в областях сложной формы рассмотрим некоторое тело Γ в прямоугольной декартовой системе координат XOY, которому в начальный момент времени t =0 сообщается механическое нестационарное импульсное воздействие. Предположим, что тело Γ изготовлено из однородного изотропного материала, подчиняющегося упругому закону Гука при малых упругих деформациях.
Точные уравнения двумерной (плоское напряженное состояние) динамической теории упругости имеют вид
(1)
где σx, σy и τxy – компоненты тензора упругих напряжений; εx, εy и γxy – компоненты тензора упругих деформаций; u и v – составляющие вектора упругих перемещений вдоль осей OX и OY соответственно; ρ – плотность материала; – скорость продольной упругой волны; – скорость поперечной упругой волны; ν – коэффициент Пуассона; E – модуль упругости; – граничный контур тела Γ.
Систему (1) в области, занимаемой телом Γ, следует интегрировать при начальных и граничных условиях.
Разработка методики и алгоритма
Для решения двумерной плоской динамической задачи теории упругости с начальными и граничными условиями (1) используем метод конечных элементов в перемещениях. Задача решается методом сквозного счета, без выделения разрывов.
Принимая во внимание определение матрицы жесткости, вектора инерции и вектора внешних сил для тела Γ, записываем приближенное значение уравнения движения в теории упругости
(2)
где – диагональная матрица инерции; – матрица жесткости; – вектор узловых упругих перемещений; – вектор узловых упругих скоростей перемещений; – вектор узловых упругих ускорений; – вектор внешних узловых упругих сил.
Соотношение (2) система линейных обыкновенных дифференциальных уравнений второго порядка в перемещениях с начальными условиями. Таким образом, с помощью метода конечных элементов в перемещениях, линейную задачу с начальными и граничными условиями (1) привели к линейной задаче Коши (2).
Для интегрирования уравнения (2) конечноэлементным вариантом метода Галеркина приведем его к следующему виду
(3)
Интегрируя по временной координате соотношение (3) с помощью конечноэлементного варианта метода Галеркина, получим двумерную явную двухслойную конечноэлементную линейную схему в перемещениях для внутренних и граничных узловых точек
(4)
Основные соотношения метода конечных элементов в перемещениях получены с помощью принципа возможных перемещений и конечноэлементного варианта метода Галеркина.
Общая теория численных уравнений математической физики требует для этого наложение определенных условий на отношение шагов по временной координате Δt и по пространственным координатам, а именно
(i = 1, 2, 3, ...), (5)
где Δl – длина стороны конечного элемента.
О моделировании сейсмической волны в упругой полуплоскости с полостью
Расчеты проводились при следующих единицах измерения: килограмм-сила (кгс); сантиметр (см); секунда (с).
Для перехода в другие единицы измерения были приняты следующие допущения: 1 кгс/см2 ≈ 0,1 МПа; 1 кгс•с2/см4 ≈ 109 кг/м3.
Рассмотрим задачу о воздействии плоской продольной сейсмической волны в виде функции Хевисайда параллельной свободной поверхности упругой полуплоскости с полостью (соотношение ширины к высоте один к четырем) (рис. 1). От точки F параллельно свободной поверхности ABEFG приложено нормальное напряжение σx, которое при 0 ≤ n ≤ 10 (n = t/Δt) изменяется линейно от 0 до P, а при n ≥ 10 равно P (P = σ0, σ0 = 0,1 МПа (1 кгс/см2)).
Граничные условия для контура GHIA при t >0 . Отраженные волны от контура GHIA не доходят до исследуемых точек при 0 ≤ n ≤ 200. Контур ABCDEFG свободен от нагрузок, кроме точки F. Расчеты проведены при следующих исходных данных: H = Δx = Δy; Δt = 1,393•10–6 с; E = 3,15•104 МПа (3,15•105 кгс/см2); ν = 0,2; ρ = 0,255•104 кг/м3 (0,255•10–5 кгс•с2/см4); Cp = 3587 м/с; CS = 2269 м/с. Решается система уравнений из 59048 неизвестных.
Рис. 1. Постановка задачи о воздействии плоской продольной сейсмической волны на упругую полуплоскость с полостью (соотношение ширины к высоте один к четырем)
Результаты расчетов для контурного напряжения во времени n получены в точках A1–A4 (рис. 1), находящихся на свободной поверхности упругой полуплоскости.
На рис. 2–5 приведены контурные напряжения в точках A1–A4 (рис. 1) во времени n.
Рис. 2. Изменение упругого контурного напряжения во времени t/Δt в точке A1: 1 – в задаче без полости; 2 – в задаче с полостью (соотношение ширины к высоте один к четырем)
Рис. 3. Изменение упругого контурного напряжения во времени t/Δt в точке A2: 1 – в задаче без полости; 2 – в задаче с полостью (соотношение ширины к высоте один к четырем)
Рис. 4. Изменение упругого контурного напряжения во времени t/Δt в точке A3: 1 – в задаче без полости; 2 – в задаче с полостью (соотношение ширины к высоте один к четырем)
Рис. 5. Изменение упругого контурного напряжения во времени t/Δt в точке A4: 1 – в задаче без полости; 2 – в задаче с полостью (соотношение ширины к высоте один к четырем)
Выводы
1. Для прогноза безопасности технических объектов при сейсмических воздействиях применяется численное моделирование. На основе метода конечных элементов в перемещениях разработаны методика, алгоритм и комплекс программ для решения линейных двумерных плоских задач, которые позволяют решать сложные задачи при сейсмических воздействиях на сооружения. Основные соотношения метода конечных элементов получены с помощью принципа возможных перемещений. Матрица упругости выражена через модуль упругости, коэффициент Пуассона и плотность.
2. Исследуемая область разбивается по пространственным переменным на треугольные конечные элементы с тремя узловыми точками с линейной аппроксимацией упругих перемещений и на прямоугольные конечные элементы с четырьмя узловыми точками с билинейной аппроксимацией упругих перемещений. По временной переменной исследуемая область разбивается на линейные конечные элементы с двумя узловыми точками с линейной аппроксимацией упругих перемещений. За основные неизвестные приняты два перемещения и две скорости перемещений в узле конечного элемента.
3. Задачи решаются методом сквозного счета, без выделения разрывов. Кусочно-линейная аппроксимация начального участка при воздействии типа функции Хевисайда уменьшает осцилляции результатов численного решения, полученных с помощью метода конечных элементов в перемещениях.
4. Линейная динамическая задача с начальными и граничными условиями в виде дифференциальных уравнений в частных производных для решения задач при сейсмических воздействиях, с помощью метода конечных элементов в перемещениях приведена к системе линейных обыкновенных дифференциальных уравнений с начальными условиями, которая решается по явной двухслойной схеме.
5. Решена задача о воздействии плоской продольной сейсмической волны на упругую полуплоскость с полостью (соотношение ширины к высоте один к четырем). Исследуемая расчетная область имеет 14762 узловых точек и 14516 конечных элементов. Решается система уравнений из 59048 неизвестных.
6. Полученные результаты можно оценить как первое приближение к решению сложной комплексной задачи, о применении полостей для увеличения безопасности технических объектов экономики при сейсмических воздействиях, с помощью численного моделирования волновых уравнений теории упругости.
Библиографическая ссылка
Мусаев В.К. ПРИМЕНЕНИЕ ВОЛНОВОЙ ТЕОРИИ СЕЙСМИЧЕСКОЙ БЕЗОПАСНОСТИ ДЛЯ МОДЕЛИРОВАНИЯ ДИНАМИЧЕСКИХ УПРУГИХ НАПРЯЖЕНИЙ В ПОЛУПЛОСКОСТИ С ПОЛОСТЬЮ (СООТНОШЕНИЕ ШИРИНЫ К ВЫСОТЕ ОДИН К ЧЕТЫРЕМ) // Международный журнал экспериментального образования. – 2016. – № 12-1. – С. 143-147;URL: https://expeducation.ru/ru/article/view?id=10844 (дата обращения: 27.12.2024).