Научный журнал
Международный журнал экспериментального образования
ISSN 2618–7159
ИФ РИНЦ = 0,425

МЕТОДЫ СИСТЕМОЛОГИИ В СИСТЕМЕ ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЙ

Швецова Н.А. 1 Синельникова Т.И. 1
1 Кубанский государственный университет
1. Трахтенгерц Э.А., Степин Ю.П., Андреев А.Ф. Компьютерные методы поддержки принятия управленческих решений в нефтегазовой промышленности. – М.: СИНТЕГ, 2005. – 592 с.
2. Клир Дж. Системология. Автоматизация решения системных задач. – М.: Радио и связь, 1990. – 544 с.
3. Швецова Н.А., Синельникова Т.И. Инструментальное средство для создания структурированных систем // Современное состояние и приоритеты развития фундаментальных наук в регионах: Материалы VIII Всероссийской научно-практической конференции молодых учёных и студентов. – Краснодар: Просвещение-Юг, 2011.
4. Гусев А.А. Реализация концепции целенаправленных систем в компьютерной поддержке принятия управленческих решений // Современные проблемы физики, биофизики и инфокоммуникационных технологий. Материалы всероссийской заочной научно-практической конференции. – Краснодар: Краснодарский ЦНТИ, 2014. – 283 с.
5. Gusev A.A., Shvetsova N.A. The design of a goal-oriented information system for decision support. Материалы IV международной научно-практической конференции Актуальные направления фундаментальных и прикладных исследований 4-5 августа 2014 г., Т.1. – North Charleston, США, 2014. – 302 с.

Принятие оптимальных управленческих решений на основе научно обоснованного прогнозирования – одна из важнейших стратегических задач современного этапа развития нашей цивилизации. Понижение эффективности управления приводит к принятию несогласованных решений во всех сферах человеческой деятельности, следствием чего являются многочисленные техногенные катастрофы. Для принятия решений, связанных с уменьшением опасности и смягчением последствий природных и техногенных катастроф, необходимо применение междисциплинарных знаний, требующих разработки и реализации системных методологий, позволяющих предложить методы эффективного решения управленческих задач на основе использования современных информационных технологий. Большинство из имеющихся методов прогнозирования (более 200) успешно работают только для стационарных процессов или при известной функции изменения характеристик процесса. К сожалению, это далеко не всегда реализуется на практике [1].

Для получения точного, научно обоснованного прогноза наиболее перспективным с нашей точки зрения является системный подход, основанный на методах системологии, концептуальная схема которых предложена Джорджем Клиром, профессором Центра Интеллектуальных Систем Университета Штата Нью-Йорк [2]. Он позволяет свести многочисленные специфические задачи к относительно небольшому классу системных задач с конечным числом стандартных методов их решения, ориентированных на использование ЭВМ. Глубокое исследование взаимодействия элементов конкретной сложной системы и, как следствие, выявление динамики развития процесса в ней на уровне структурированных систем производится на основе глубокого исследования её реконструктивных свойств по имеющемуся эмпирическому массиву данных. Однако катастрофически быстрый рост количества реконструктивных гипотез с увеличением числа параметров, определяющих состояние системы, не позволил основателю системологии распространить разработанную им методологию на такие сложные системы [2], [3]. Нам удалось модифицировать алгоритмы Дж. Клира путём отсечения значительного количества реконструктивных гипотез (альтернатив), появляющихся на последующих этапах уточнения структурированных систем, наложением ограничений на информационное расстояние между ними и введением целевых переменных, что и легло в основу работы спроектированного и реализованного нами модуля СППР. При его разработке использовался объектно-ориентированный и легко расширяемый кросс-платформенный инструментарий разработки программного обеспечения на языке программирования C++ – Qt. Удалось решить проблему значительной экономии оперативной памяти в процессе работы программы, переопределения существующих и определения новых методов обработки и визуального представления данных. Успешно развивает концепцию Дж. Клира на уровне целенаправленных систем для СППР сотрудник физического факультета Кубанского государственного университета А.А. Гусев [4, 5].

Спроектированный и отлаженный нами программный модуль позволяет:

• произвести генерацию всех реконструктивных гипотез (альтернатив), отвечающих требованиям неизбыточности и покрытия;

• выявить все внутренние и внешние системные связи для исследуемой проблемы;

• прогнозировать динамику поведения целевого параметра во времени;

• сгенерировать и выдать исследователю управленческое решение на естественном языке в исследуемой им предметной области.


Библиографическая ссылка

Швецова Н.А., Синельникова Т.И. МЕТОДЫ СИСТЕМОЛОГИИ В СИСТЕМЕ ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЙ // Международный журнал экспериментального образования. – 2015. – № 11-1. – С. 136-137;
URL: https://expeducation.ru/ru/article/view?id=8354 (дата обращения: 03.12.2024).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674